VALVULAR HEART DISEASE

By :

Dr. Sheerwan Bahaa Interventional Cardiologist AS : aortic valve stenosis AR : aortic valve regurgitation

MS : mitral valve stenosis MR : mitral valve regurgitation

PS : pulmonary valve stenosis PR : pulmonary valve regurgitation

TS : tricuspid valve stenosis TR : tricuspid valve regurgitation

RHF : right sided heart failure LHF : left sided heart failure .

LVH : left ventricular hypertrophy RVH : right ventricular hypertrophy

PH : pulmonary hypertension

HFrEF: Hear failure with reduced ejection fraction

DOAC : Direct acting oral anticoagulant VKA: Vitamin K antagonist

TAVI : Transcatheter aortic valve implanation

Normal Heart

Heart valve

Valve stenosis (pressure overload)					
Severe MS, TS	↑ pressure in the preceding champers				
severe AS, PS	个 pressure in the preceding champers Fast jets can impact (aorta , PA) wall : post-stenotic dilatation				
Valve regurgitation (volume overload)					
Severe MR, TR	↑ volume > pressure in preceding chambers↑ volume in the following chamber				
Severe AR	 ↑ volume > pressure in preceding chambers ↑ Volume to aorta and peripheral arteries (AR peripheral signs) 				

Aortic root dilatation :

- It can be the the cause of aortic regurgitation (AR due to aortic root disease) : e.g Marfan syndrome
- It results from Post-stenotic dilatation (impact of the jet on the aortic wall): variable; not related to severity of AS; more in younger age patients (especially congenital and bicuspid AS)
- It associates with some cases of bicuspid aortic valve disease (genetic aortic root dilatation) and degenerative aortic valve disease (atherosclerotic aortic root dilatation)

Enlarged chamber (clinical , ECG , CXR , Echocardiography)

	Aorta	LV	LA	PA	RV	RA
AR	- (+)(++)	++	+	+	+	+
AS	-(+)(++)	++	+	+	+	+
Primary MR		++	++	+(++)	+	+
MS			++	++	+	+
PS				++	++	+
PR					++	+
Primary TR					++	++
TS						++

Symptom	Cause
Asymptomatic	
Chest pain	AS, PH : (exertional)
Palpitation	Arrhythmias (atrial fibrillation, ventricular arrhythmias with ventricular dysfunction)
Syncope	Low cardiac output (severe stenosis) : exertional , arrhythmias
Fatigue	Low cardiac output (severe stenosis , ventricular dysfunction)
Breathlessness	Pulmonary congestion (left sided valvular disease)
Cough	Pulmonary congestion (left sided valvular disease)
Haemoptysis	Pulmonary congestion (left sided valvular disease) ; most common with severe MS
Oedema	RHF
Thromboembolism	Atrial fibrillation (most common with mitral valve disease especially MS)
Sudden death	severe AS, Ventricular arrhythmias (ventricular dysfunction)

Normal heart

- Mitral facies :Severe mitral stenosis
- Abnormal pulse :

Small volume pulse (severe MS) Small volume and slow rising (pulsus parvus et tardus) (severe AS) Large volume pulse (severe MR) large volume and collapsing (severe AR) Bisference pulse (two systolic peaks) (severe AR or mixed AR and AS)

• Abnormal BP :

Hypertension : Coarctation of aorta (associated with bicuspid aortic valve that can cause AS, AR or mixed AS and AR) ; systemic hypertension associated with degenerative aortic valve disease Hypotension & /or shock : advanced left or right ventricular failure Wide pulse pressure : severe AR Narrow pulse pressure : severe AS

• Ankles oedema and raised JVP: RHF

Abnormal Apex beat

Displaced apex beat :

LV pressure overload (severe AS): laterally, thrusting sustained LV volume overload (severe AR, severe MR): downward and laterally: thrusting non sustained Tapping apex: MS

- Thrill (systolic) = Grade VI murmur : severe MR , severe AS , severe TR , severe PS
- Parasternal Heave (RV dilatation or hypertrophy): PH (severe left-sided valvular disease), severe PS , severe PR , Severe TR . Except ?

Peripheral Signs of AR

They are due to the high-flow state, large stroke volume and wide pulse pressure

- > **De Musset's sign:** Bobbing of the **head** with each heartbeat (like a bird walking)
- Becker's sign: Visible pulsation of the retinal arterioles
- Landolfi's sign: Systolic contraction and diastolic dilation of the pupil
- Muller's sign: Visible pulsations of the uvula
- > Corrigan's pulse: A rapid and forceful distension of the caroted pulse with a quick collapse
- Water hammer pulse : a bounding pulse with rapid systolic rising and diastolic collapse that can be appreciated at either the radial, ulnar or brachial artery.
- > Quincke's sign: Capillary pulsations seen on light compression of the nail bed
- > Traube's sign: Systolic and diastolic sounds heard over the femoral artery ("pistol shots")
- > Duroziez's sign: Gradual pressure over the femoral artery leads to a systolic and diastolic bruit
- Hill's sign: Popliteal systolic blood pressure exceeding brachial systolic blood pressure 60 mm Hg or more (most sensitive sign for aortic regurgitation)
- > Mayne's sign: A decrease in diastolic blood pressure of 15 mmHg when the arm is held above the head (very non-specific)
- Rosenbach's sign: Hepatic pulsations
- Gerhardt's sign (aka Sailer's sign): Pulsation of the spleen in the presence of splenomegaly

• Abnormal heart sounds:

AREA	Aortic	Tricuspid	Mitral	Pulmonary
LOCATION OF SOUND	Second intercostal space, right sternal border	Fifth intercostal space, left sternal border	Fifth intercostal space, mid- clavicular line	Second intercostal space, left sternal border
TIMING OF SOUND	Aortic valve is heard here during S2.	Tricuspid valve is heard here during S1.	Mitral valve is heard here during S1.	Pulmonary valve is heard here during S2.

Different Lines

Axillary fossa-

Anterior axillary pectorales major line

Midaxillary line middle of arm pit

Posterior axillary line Posterior border..lats

(B)

SYTOLIC MURMUR	TIMING	SITE	CHARACHTER	RADIATION	Effect of severity on intensity and duration	Effect of respiration
AS	Ejection systolic	Aortic area	harsh	To caroted	↑ then $↓$ when LV dysfunction	\uparrow with expiration
PS	Ejection systolic	pulmonary area	harsh	To left shoulder	↑ then $↓$ when RV dysfunction	\uparrow with inspiration
MR due to mitral valve prolapse	Mid systolic	Mitral area	blowing	To axilla	↑ The click earlier and closer to S1	
MR	Pan-systolic	Mitral area	blowing	To axilla	\uparrow	\uparrow with expiration
TR	Pan-systolic	Tricuspid area	blowing		1	\uparrow with inspiration

DIASTOLIC MURMUR	TIMING	SITE	CHARACHTER	RADIATION	Effect of severity on intensity and duration	Effect of respiration
PR	Early diastolic murmur	Pulmonary area	blowing		1	↑ with inspiration
AR	Early diastolic murmur	Aortic area (secondary = aortic root disease) Erb's area (primary = valve disease) : best on leaning forward and holding expiration	blowing		1	↑ with expiration
Austin flint	Mid diastolic rumbling (Severe AR)	Mitral area	rumbling		1	↑ with inspiration
MS	Mid diastolic rumbling	Mitral area best on left lateral position	rumbling		1	↑ with expiration
TS	Mid diastolic rumbling	Tricuspid area	rumbling		1	↑ with inspiration

Mechanism of Austin flint murmur

• Chest :

Crepitations : pulmonary oedema (LHF) Pleural effusion : RHF

• Abdomen :

Ascites , tender hepatomegaly (hepatic congestion) : RHF Tender pulsatile hepatomegaly : severe TR Splenomegaly : chronic severe RHF : cardiac cirrhosis

Investigations :

ECG :

chambers enlargement , arrhythmias

- Chest X ray : severely calcified valves
 chambers, great vessels (aorta and pulmonary artery)
 Pulmonary congestion, pleural effusion
- Echocardiography : valves morphology and function atrial size ventricular size , wall thickness and function pulmonary artery pressure
- Cardiac catheterization : Coexistent coronary artery diseases , severity of valvular disease

Fig. 1: Cardiac borders on a Posterior-Anterior (P-A) chest radiograph (CXR). Relationship between borders of the cardiac shadow and the adjiacent lung portion. Ao=aorta arch; SVC=superior vena cava; PA= pulmonary artery; RA=right atrium; LV=left ventricle; RV=right ventricle.

Fig. 7: Cardiac borders on a lateral CXR. Ao=Aorta; PA=pulmonary artery; RV=right ventricle; LV=left ventricle; LA=left atrium.

• Lateral view: Prominent posterosuperior cardiac border Posterior displacement and upliftment of left mainstem bronchus

> 1/3

Cardiac apex

	7		> 40)ms []	~	
	Pmitr	ale		~~~~		/~~_
V1						
	40ms		السيريسية			

RV ENLARGEMENT

Diagnostic criteria

•RAD
•Dominant R wave in V1 (> 7mm tall or R/S ratio > 1).
•Dominant S wave in V5 or V6 (> 7mm deep or R/S ratio < 1).
•QRS duration < 120ms (i.e. changes not due to RBBB).

Supporting criteria

RA enlargement (P pulmonale).

RV strain pattern = ST depression / T wave inversion in the right precordial (V1-4) and inferior (II, III, aVF) leads. S1 S2 S3 pattern = far right axis deviation with dominant S waves in leads I, II and III. Deep S waves in the lateral leads (I, aVL, V5-V6).

LV ENLARGMENT

•R wave in V5 or V6 plus S wave in V1 > 35 mm
•Largest R wave plus largest S wave in precordial leads > 45 mm

Causes of mitral stenosis

Mitral stenosis is almost always rheumatic in origin There is also a rare form of congenital mitral stenosis.

Mitral Regurgitation

16.80 Causes of mitral regurgitation

- Mitral valve prolapse
- Dilatation of the left ventricle and mitral valve ring (e.g. coronary artery disease, cardiomyopathy)
- Damage to valve cusps and chordae (e.g. rheumatic heart disease, endocarditis)
- Ischaemia or infarction of the papillary muscle

16.84 Causes of aortic stenosis

Infants, children, adolescents

- Congenital aortic stenosis
- Congenital subvalvular aortic stenosis
- Congenital supravalvular aortic stenosis

Young adults to middle-aged

- Calcification and fibrosis of congenitally bicuspid aortic valve
- Rheumatic aortic stenosis

Middle-aged to elderly

- Senile degenerative aortic stenosis
- Calcification of bicuspid valve
- Rheumatic aortic stenosis

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

16.88 Causes of aortic regurgitation

Congenital

• Bicuspid valve or disproportionate cusps

Acquired

- Rheumatic disease
- Infective endocarditis
- Trauma
- Causes of aortic dilatation: Marfan's syndrome Aneurysm Aortic dissection Syphilis Ankylosing spondylitis

Tricuspid stenosis

Tricuspid stenosis is usually **rheumatic** in origin and is rare in developed countries. It always occurs in association with mitral and aortic valve disease.

Tricuspid stenosis and regurgitation may also occur in **carcinoid syndrome**

16.91 Causes of tricuspid regurgitation

Primary

- Rheumatic heart disease
- Endocarditis, particularly in intravenous drug-users
- Ebstein's congenital anomaly (see Box 16.102)

Secondary

- Right ventricular failure
- Right ventricular infarction
- Pulmonary hypertension

Management:

• Patients with asymptomatic and mild valvular disease can be followed up

Indications for intervention				
Symptomatic patients	Severe valve disease			
Ventricular dysfunction:	Primary MR , AR , AS $\rightarrow \underline{LV}$ Primary TR, PS, PR $\rightarrow \underline{RV}$			
Significant Ventricular dilatation :	Primary MR , AR $\rightarrow \underline{LV}$ Primary TR, PR $\rightarrow \underline{RV}$			
New onset AF	MS, primary MR			
Severe pulmonary hypertension	AS, MS, primary MR			
Undergoing cardiac surgery (CABG, another valve)	Moderate – severe valve disease			
Desire pregnancy	Severe MS , AS			

Balloon valvuloplasty (Trans-catheter)

- Suitable morphology MS (not heavily calcified , absence of LA thrombus, less than moderate MR)
- Suitable morphology PS (not dysplastic , less than moderate PR)
- AS with haemodynamic instability as a bridge to aortic valve replacement

Valve repair

Surgical :

- Primary MR especially mitral prolapse
- Primary TR
- Few cases of AR by suitable morphology bicuspid aortic valve
- **Trans-catheter** :
- High surgical risk MR

Valve replacement

- Mechanical
 - 1. Surgical
 - 2. Trans-catheter : Aortic (TAVI)
- Bio-prosthetic valve (surgical)

https://meet.google.com/zkb-dzps-sgw

Aortic root replacement + Aortic valve replacement

When aortic root dilatation is the cause of AR as can occur in Marfan's syndrome

The mitral annulus

- the anatomical junction between the LV and LA
- serves an insertion site for the leaflet tissue

The mitral annulus

- the anatomical junction between the LV and LA
- serves an insertion site for the leaflet tissue

Mitral Annulus

AO

Anterior Leaflet "Bend"

LA

Functional mitral regurgitation

Normal mitral valve anatomy Primary mitral regurgitation due to valve prolapse

Management of severe secondary MR

Management of severe secondary TR

Medical management in vavular heart disease:

- Treatment may be required for underlying conditions such as endocarditis, aortic dissection
- Treatment of Atrial fibrillation:
 - Anticoagulation (VKA, DOAC except for moderate-severe MS)
 - Rate control : Digoxin, B blockers or rate-limiting calcium channel blockers
 - Rhythm control : few cases are eligible
- Pulmonary oedema &/or volume overload : Loop diuretics
- Treatment of Heart failure with reduced ejection fraction HFrEF
- Systemic hypertension : Vasodilators like ACEI and ARB (cautious in severe aortic stenosis)

(DOAC) direct acting oral anticoagulant? advantage and disadvantage vs wafarin

Advantage	Disadvantage
Rapid onset and offset	Higher cost
Less intracranial bleeding and haemorrhagic stroke	More GI bleeding
No need for lab monitoring	Ineffective for mechanical heart valves and moderate-severe MS
Fewer drug-drug and food interactions	

Biologic

- Lasts 8-10 years
- No anticoagulation
- No Click

Mechanical

- Lasts > 20 years
- Lifelong anticoagulation
- Click

<u>Choice of prosthetic valve :</u>

- Patient desire
- Age

AGE	Favour mechanical	Borderline age	Favour bioprosthesis
Aortic valve	<60	60-65	>65
Mitral valve	<65	65-70	>70

Less Durable (risk of re-intervention)

BIOPROSTHESIS

Anticoagulation (teratogenicity , bleeding ,thrombosis)

MECHANICAL

Biological valve : <u>It is not recommended for</u> :

- **Young age** < 40
- Hyperparathyroidism (accelerated valve degeneration)
- High risk for redo surgery (prior radiotherapy, porcelain aorta, more than 1 valve, ventricular dysfunction)
- The patient already has another indication of anticoagulation e.g. : AF , Venous thromboembolism , other mechanical valve

Mechanical valve : <u>It is not recommended for</u> :

- Reproductive age female contemplating **pregnancy**
- High bleeding risk : high risk occupation , previous major bleeding , poor compliance
- High thrombotic risk : Hx of valve thrombosis on adequate anticoagulation , poor compliance , poor adherence
- Low life expectancy : less than 10 years